Studi Kenaikan Muka Air Laut di Pesisir Lampung dan Banten menggunakan Satelit Altimetri

Authors

  • Zulfikar Adlan Nadzir Geomatics Engineering, Institut Teknologi Sumatera
  • Haikhal Nuri Agung Geomatics Engineering, Institut Teknologi Sumatera
  • Fikri Fahrurozi Geomatics Engineering, Institut Teknologi Sumatera

DOI:

https://doi.org/10.30649/jrkt.v7i2.137

Keywords:

sea level rise, altimetry, Indonesian coastal zone, climate change

Abstract

Perubahan iklim mendorong kenaikan muka air laut secara global yang berdampak signifikan terhadap wilayah pesisir, termasuk di Indonesia. Perubahan ini mengancam ekosistem, infrastruktur, serta kehidupan masyarakat di wilayah tersebut. Penelitian ini bertujuan untuk mengkuantifikasi, menganalisis dan membandingkan tren kenaikan muka laut di wilayah pesisir Lampung dan Banten dengan menggunakan data satelit altimetri Jason-1, Jason-2, dan Jason-3 selama periode 2002–2019. Dalam penelitian ini, data altimetri berupa ketinggian permukaan laut (Sea Surface Height/SSH) diproses menjadi Sea Level Anomaly (SLA) dan Total Water Level Envelope (TWLE) dengan menerapkan koreksi umum seperti troposfer basah dan kering, ionosfer, bias gelombang laut (sea-state bias), dan pasang surut, yang kemudian divalidasi dengan data dari tiga stasiun pasang surut. Hasil penelitian menunjukkan bahwa rata-rata tren kenaikan muka air laut di pesisir barat Lampung sebesar 5,46 mm/tahun, di Banten bagian selatan sebesar 2,84 mm/tahun, dan di Banten bagian utara sebesar 6,20 mm/tahun. Deret waktu TWLE menunjukkan korelasi yang kuat terhadap data pengukuran dari stasiun pasang surut, dengan nilai R = 0,93, yang menunjukkan konsistensi tinggi antara data satelit dan data lapangan. Temuan ini mengindikasikan bahwa pesisir dengan kemiringan batimetri yang landai cenderung mengalami laju kenaikan lebih tinggi dibandingkan dengan pesisir berlereng curam. Hal ini menegaskan bahwa satelit altimetri merupakan metode andal untuk pemantauan muka laut, bahkan di zona pesisir yang kompleks dan memiliki keterbatasan pengamatan. Hasil penelitian ini memiliki implikasi bagi perencanaan adaptasi perubahan iklim dan mitigasi bencana di wilayah pesisir Indonesia, terutama dalam pengembangan sistem pemantauan jangka panjang yang mengintegrasikan altimetri, pasang surut, dan GNSS.

References

Ablain, M., Legeais, J. F., Prandi, P., Marcos, M., Fenoglio-Marc, L., Dieng, H. B., Benveniste, J., & Cazenave, A. (2017). Satellite Altimetry-Based Sea Level at Global and Regional Scales. Dalam A. Cazenave, N. Champollion, F. Paul, & J. Benveniste (Ed.), Integrative Study of the Mean Sea Level and Its Components (Vol. 58, hlm. 9–33). Springer International Publishing. https://doi.org/10.1007/978-3-319-56490-6_2

Achiari, H., Nurisman, N., Ahmad, A. L., & Setiawati, E. (2021). The Coastal Hydrodynamics Analysis in The Lampung Bay. IOP Conference Series: Earth and Environmental Science, 830(1), 012037. https://doi.org/10.1088/1755-1315/830/1/012037

Ariana, D., Kusmana, C., & Setiawan, Y. (2017). STUDY OF SEA LEVEL RISE USING SATELLITE ALTIMETRY DATA IN THE SEA OF DUMAI, RIAU, INDONESIA. Geoplanning: Journal of Geomatics and Planning, 4(1), 75. https://doi.org/10.14710/geoplanning.4.1.75-82

Bayhaqi, A., Wisha, U. J., & Iswari, M. Y. (2022). The Evidence of Coastline Changes in Banten Bay, Indonesia. Trends in Sciences, 19(4), Article 4. https://doi.org/10.48048/tis.2022.2198

Benveniste, J., Cazenave, A., Vignudelli, S., Fenoglio-Marc, L., Shah, R., Almar, R., Andersen, O., Birol, F., Bonnefond, P., Bouffard, J., Calafat, F., Cardellach, E., Cipollini, P., Le Cozannet, G., Dufau, C., Fernandes, M. J., Frappart, F., Garrison, J., Gommenginger, C., … Wöppelmann, G. (2019). Requirements for a Coastal Hazards Observing System. Frontiers in Marine Science, 6, 348. https://doi.org/10.3389/fmars.2019.00348

Birol, F., Bignalet-Cazalet, F., Cancet, M., Daguze, J.-A., Fkaier, W., Fouchet, E., Léger, F., Maraldi, C., Niño, F., Pujol, M.-I., & Tran, N. (2025). Understanding uncertainties in the satellite altimeter measurement of coastal sea level: Insights from a round-robin analysis. Ocean Science, 21(1), 133–150. https://doi.org/10.5194/os-21-133-2025

Birol, F., Léger, F., Passaro, M., Cazenave, A., Niño, F., Calafat, F. M., Shaw, A., Legeais, J.-F., Gouzenes, Y., Schwatke, C., & Benveniste, J. (2021). The X-TRACK/ALES multi-mission processing system: New advances in altimetry towards the coast. Advances in Space Research, 67(8), 2398–2415. https://doi.org/10.1016/j.asr.2021.01.049

Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., … Péan, C. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. (First). Intergovernmental Panel on Climate Change (IPCC). https://doi.org/10.59327/IPCC/AR6-9789291691647

Cao, A., Esteban, M., Valenzuela, V. P. B., Onuki, M., Takagi, H., Thao, N. D., & Tsuchiya, N. (2021). Future of Asian Deltaic Megacities under sea level rise and land subsidence: Current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City. Current Opinion in Environmental Sustainability, 50, 87–97. https://doi.org/10.1016/j.cosust.2021.02.010

Cazenave, A., Gouzenes, Y., Lancelot, L., Birol, F., Legér, F., Passaro, M., Calafat, F. M., Shaw, A., Niño, F., Legeais, J. F., Oelsmann, J., & Benveniste, J. (2024). New network of virtual altimetry stations for measuring sea level along the world coastlines [Dataset]. [object Object]. https://doi.org/10.17882/74354

Chaussard, E., Amelung, F., Abidin, H., & Hong, S.-H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150–161. https://doi.org/10.1016/j.rse.2012.10.015

Chen, J., Fenoglio, L., Kusche, J., Liao, J., Uyanik, H., Nadzir, Z. A., & Lou, Y. (2023). Evaluation of Sentinel-3A altimetry over Songhua river Basin. Journal of Hydrology, 618, 129197. https://doi.org/10.1016/j.jhydrol.2023.129197

Fenoglio-Marc, L., Braitenberg, C., & Tunini, L. (2012). Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Physics and Chemistry of the Earth, Parts A/B/C, 40–41, 47–58. https://doi.org/10.1016/j.pce.2011.05.014

Fenoglio-Marc, L., Schöne, T., Illigner, J., Becker, M., Manurung, P., & Khafid. (2012). Sea Level Change and Vertical Motion from Satellite Altimetry, Tide Gauges and GPS in the Indonesian Region. Marine Geodesy, 35(sup1), 137–150. https://doi.org/10.1080/01490419.2012.718682

Grafarend, E. W. (2006). Linear and nonlinear models: Fixed effects, random effects, and mixed models. de Gruyter.

Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte, R. M., Stammer, D., Tamisiea, M. E., & Van De Wal, R. S. W. (2019). Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surveys in Geophysics, 40(6), 1251–1289. https://doi.org/10.1007/s10712-019-09525-z

Handoko, E. Y., Fernandes, M., & Lázaro, C. (2017). Assessment of Altimetric Range and Geophysical Corrections and Mean Sea Surface Models—Impacts on Sea Level Variability around the Indonesian Seas. Remote Sensing, 9(2), 102. https://doi.org/10.3390/rs9020102

Hartanto, M. T., Effendi, I., Prartono, T., Puradiredja, S. P., Lestari, D. F., Susanti, S., & Salsabila, A. (2024). KONDISI OSEANOGRAFI DAN KESESUAIAN LOKASI BUDIDAYA LOBSTER DI PERAIRAN TELUK PIDADA, LAMPUNG. Jurnal Teknologi Perikanan dan Kelautan, 15(3), Article 3. https://doi.org/10.24319/jtpk.15.285-297

Kismawardhani, R. A., Wirastriya, A., & Berlianty, D. (2018). Sea Level Rise in The Java Sea Based on Altimetry Satellites Data Over 1993-2015. IOP Conference Series: Earth and Environmental Science, 165(1), 012006. https://doi.org/10.1088/1755-1315/165/1/012006

Lumban-Gaol, J., Adrian, D., Vignudelli, S., Leben, Robert. R., Wayan Nurjaya, I., Osawa, T., Manurung, P., & Arhatin, R. E. (2018). An assessment of a coastal altimetry data product in the Indonesian Waters. IOP Conference Series: Earth and Environmental Science, 176(1), 012034. https://doi.org/10.1088/1755-1315/176/1/012034

Nadzir, Z. A. (2017). Coastal Sea State Bias: Correcting Coastal Sea Level by Studying the Relation between Wind, Waves, and the Radar Signals. [Master Thesis]. Technische Universität München.

Nadzir, Z. A. (2024). STUDI KOMPARASI UNTUK AS-BUILT SURVEY DAN PENGAWASAN DEFORMASI DARI GEDUNG: METODE TERESTRIS VS METODE SATELIT DI GEDUNG KULIAH UMUM (GKU) INSTITUT TEKNOLOGI SUMATERA. Journal of Science and Applicative Technology, 8(1), 65. https://doi.org/10.35472/jsat.v8i1.1635

Nadzir, Z. A., & Adil, I. (2024). Assessment of Low-Cost Tide Gauges to Meet GLOSS 1-cm Precision and Accuracy Standards: A Case Study on Pramuka Island, Indonesia. Forum Geografi, 38(2), 222–230. https://doi.org/10.23917/forgeo.v38i2.5182

Nadzir, Z. A., & Irfansyah, M. (2024). Using Geodetic Methods in Road Construction Planning: To What Extent Will It Be Effective? Journal of Infrastructure Policy and Management, 7(2), 167–180. https://doi.org/10.35166/jipm.v7i2.58

Nadzir, Z. A., & Rahmadhani, N. (2024). EVALUASI DAN KOMPARASI DARI MODEL ANOMALI GAYA BERAT di LAUTAN INDONESIA. Jurnal Sains Informasi Geografi, 7(2), 99. https://doi.org/10.31314/jsig.v7i2.3073

Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. (2018). Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences, 115(9), 2022–2025. https://doi.org/10.1073/pnas.1717312115

Nicholls, R. J., & Cazenave, A. (2010). Sea-Level Rise and Its Impact on Coastal Zones. Science, 328(5985), 1517–1520. https://doi.org/10.1126/science.1185782

Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338–342. https://doi.org/10.1038/s41558-021-00993-z

Pahlevi, A., Syafarianty, A., Susilo, S., Lumban-Gaol, Y., Putra, W., Triarahmadhana, B., Bramanto, B., Muntaha, R., El Fadhila, K., Ladivanov, F., Amrossalma, H., Islam, L., Novianto, D., Huda, S., Wismadi, T., Efendi, J., Ramadhan, A., Wijaya, D., Prijatna, K., & Pramono, G. (2024). Geoid Undulation Model as Vertical Reference in Indonesia. Scientific Data, 11(1), 822. https://doi.org/10.1038/s41597-024-03646-w

Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G. D., & Snaith, H. M. (2014). ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sensing of Environment, 145, 173–189. https://doi.org/10.1016/j.rse.2014.02.008

Passaro, M., Dinardo, S., Quartly, G. D., Snaith, H. M., Benveniste, J., Cipollini, P., & Lucas, B. (2016). Cross-calibrating ALES Envisat and CryoSat-2 Delay–Doppler: A coastal altimetry study in the Indonesian Seas. Advances in Space Research, 58(3), 289–303. https://doi.org/10.1016/j.asr.2016.04.011

Passaro, M., Nadzir, Z. A., & Quartly, G. D. (2018). Improving the precision of sea level data from satellite altimetry with high-frequency and regional sea state bias corrections. Remote Sensing of Environment, 218, 245–254. https://doi.org/10.1016/j.rse.2018.09.007

Sianturi, O. R., Widada, S., Prasetyawan, I. B., & Novico, F. (2013). Pemodelan Hidrodinamika Sederhana Berdasarkan Data HIdro-Oseanografi Lapangan di Teluk Lampung. Journal of Oceanography, 2(3), Article 3.

Sidabutar, Y. L., Sasmito, B., & Amarrohman, F. J. (2016). ANALISIS SEA LEVEL RISE DAN KOMPONEN PASANG SURUT DENGAN MENGGUNAKAN DATA SATELIT ALTIMETRI JASON-2. Jurnal Geodesi Undip, 5(1), Article 1. https://doi.org/10.14710/jgundip.2016.10596

Sinurat, M. E., Nababan, B., Gaol, J. L., Manik, H. M., & Idris, N. H. (2021). WAVEFORM CLASSIFICATION AND RETRACKING OF JASON-2 AND JASON-3 IN HALMAHERA SEA. Jurnal Teknologi, 83(3), 107–117. https://doi.org/10.11113/jurnalteknologi.v83.15125

Sprintall, J., Wijffels, S., Gordon, A. L., Ffield, A., Molcard, R., Susanto, R. D., Soesilo, I., Sopaheluwakan, J., Surachman, Y., & van Aken, H. M. (2004). INSTANT: A new international array to measure the Indonesian Throughflow. Eos, Transactions American Geophysical Union, 85(39), 369–376. https://doi.org/10.1029/2004EO390002

Stammer, D., & Cazenave, A. (2017). Satellite Altimetry over Oceans and Land Surfaces (D. Stammer & A. Cazenave, Ed.; 1 ed.). CRC Press. https://doi.org/10.1201/9781315151779

Tamba, A. Y. P., Sasmito, B., & Haniah, H. (2016). ANALISIS SEA LEVEL RISE DAN PENENTUAN KOMPONEN PASUT DENGAN MENGGUNAKAN DATA SATELIT ALTIMETRI JASON-2 TAHUN 2011-2014 (Studi Kasus: Perairan Sumatera Bagian Timur). Jurnal Geodesi Undip, 5(2), Article 2. https://doi.org/10.14710/jgundip.2016.11524

Wisha, U. J., Husrin, S., & Prihantono, J. (2015). Hydrodynamics Banten Bay During Transitional Seasons (August-September) (Hidrodinamika Perairan Teluk Banten Pada Musim Peralihan (Agustus–September)). ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 20(2), 101. https://doi.org/10.14710/ik.ijms.20.2.101-112

Woodworth, P. L. (1991). The Permanent Service for Mean Sea Level and the Global Sea Level Observing System. Journal of Coastal Research, 7(3), 699–710. JSTOR.

Published

2025-11-01

How to Cite

Nadzir, Z. A., Agung, H. N., & Fahrurozi, F. (2025). Studi Kenaikan Muka Air Laut di Pesisir Lampung dan Banten menggunakan Satelit Altimetri . Jurnal Riset Kelautan Tropis (Journal Of Tropical Marine Research) (J-Tropimar), 7(2), 106–121. https://doi.org/10.30649/jrkt.v7i2.137

Issue

Section

Articles