Studi Kenaikan Muka Air Laut di Pesisir Lampung dan Banten menggunakan Satelit Altimetri
DOI:
https://doi.org/10.30649/jrkt.v7i2.137Keywords:
sea level rise, altimetry, Indonesian coastal zone, climate changeAbstract
Perubahan iklim mendorong kenaikan muka air laut secara global yang berdampak signifikan terhadap wilayah pesisir, termasuk di Indonesia. Perubahan ini mengancam ekosistem, infrastruktur, serta kehidupan masyarakat di wilayah tersebut. Penelitian ini bertujuan untuk mengkuantifikasi, menganalisis dan membandingkan tren kenaikan muka laut di wilayah pesisir Lampung dan Banten dengan menggunakan data satelit altimetri Jason-1, Jason-2, dan Jason-3 selama periode 2002–2019. Dalam penelitian ini, data altimetri berupa ketinggian permukaan laut (Sea Surface Height/SSH) diproses menjadi Sea Level Anomaly (SLA) dan Total Water Level Envelope (TWLE) dengan menerapkan koreksi umum seperti troposfer basah dan kering, ionosfer, bias gelombang laut (sea-state bias), dan pasang surut, yang kemudian divalidasi dengan data dari tiga stasiun pasang surut. Hasil penelitian menunjukkan bahwa rata-rata tren kenaikan muka air laut di pesisir barat Lampung sebesar 5,46 mm/tahun, di Banten bagian selatan sebesar 2,84 mm/tahun, dan di Banten bagian utara sebesar 6,20 mm/tahun. Deret waktu TWLE menunjukkan korelasi yang kuat terhadap data pengukuran dari stasiun pasang surut, dengan nilai R = 0,93, yang menunjukkan konsistensi tinggi antara data satelit dan data lapangan. Temuan ini mengindikasikan bahwa pesisir dengan kemiringan batimetri yang landai cenderung mengalami laju kenaikan lebih tinggi dibandingkan dengan pesisir berlereng curam. Hal ini menegaskan bahwa satelit altimetri merupakan metode andal untuk pemantauan muka laut, bahkan di zona pesisir yang kompleks dan memiliki keterbatasan pengamatan. Hasil penelitian ini memiliki implikasi bagi perencanaan adaptasi perubahan iklim dan mitigasi bencana di wilayah pesisir Indonesia, terutama dalam pengembangan sistem pemantauan jangka panjang yang mengintegrasikan altimetri, pasang surut, dan GNSS.
References
Ablain, M., Legeais, J. F., Prandi, P., Marcos, M., Fenoglio-Marc, L., Dieng, H. B., Benveniste, J., & Cazenave, A. (2017). Satellite Altimetry-Based Sea Level at Global and Regional Scales. Dalam A. Cazenave, N. Champollion, F. Paul, & J. Benveniste (Ed.), Integrative Study of the Mean Sea Level and Its Components (Vol. 58, hlm. 9–33). Springer International Publishing. https://doi.org/10.1007/978-3-319-56490-6_2
Achiari, H., Nurisman, N., Ahmad, A. L., & Setiawati, E. (2021). The Coastal Hydrodynamics Analysis in The Lampung Bay. IOP Conference Series: Earth and Environmental Science, 830(1), 012037. https://doi.org/10.1088/1755-1315/830/1/012037
Ariana, D., Kusmana, C., & Setiawan, Y. (2017). STUDY OF SEA LEVEL RISE USING SATELLITE ALTIMETRY DATA IN THE SEA OF DUMAI, RIAU, INDONESIA. Geoplanning: Journal of Geomatics and Planning, 4(1), 75. https://doi.org/10.14710/geoplanning.4.1.75-82
Bayhaqi, A., Wisha, U. J., & Iswari, M. Y. (2022). The Evidence of Coastline Changes in Banten Bay, Indonesia. Trends in Sciences, 19(4), Article 4. https://doi.org/10.48048/tis.2022.2198
Benveniste, J., Cazenave, A., Vignudelli, S., Fenoglio-Marc, L., Shah, R., Almar, R., Andersen, O., Birol, F., Bonnefond, P., Bouffard, J., Calafat, F., Cardellach, E., Cipollini, P., Le Cozannet, G., Dufau, C., Fernandes, M. J., Frappart, F., Garrison, J., Gommenginger, C., … Wöppelmann, G. (2019). Requirements for a Coastal Hazards Observing System. Frontiers in Marine Science, 6, 348. https://doi.org/10.3389/fmars.2019.00348
Birol, F., Bignalet-Cazalet, F., Cancet, M., Daguze, J.-A., Fkaier, W., Fouchet, E., Léger, F., Maraldi, C., Niño, F., Pujol, M.-I., & Tran, N. (2025). Understanding uncertainties in the satellite altimeter measurement of coastal sea level: Insights from a round-robin analysis. Ocean Science, 21(1), 133–150. https://doi.org/10.5194/os-21-133-2025
Birol, F., Léger, F., Passaro, M., Cazenave, A., Niño, F., Calafat, F. M., Shaw, A., Legeais, J.-F., Gouzenes, Y., Schwatke, C., & Benveniste, J. (2021). The X-TRACK/ALES multi-mission processing system: New advances in altimetry towards the coast. Advances in Space Research, 67(8), 2398–2415. https://doi.org/10.1016/j.asr.2021.01.049
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., … Péan, C. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. (First). Intergovernmental Panel on Climate Change (IPCC). https://doi.org/10.59327/IPCC/AR6-9789291691647
Cao, A., Esteban, M., Valenzuela, V. P. B., Onuki, M., Takagi, H., Thao, N. D., & Tsuchiya, N. (2021). Future of Asian Deltaic Megacities under sea level rise and land subsidence: Current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City. Current Opinion in Environmental Sustainability, 50, 87–97. https://doi.org/10.1016/j.cosust.2021.02.010
Cazenave, A., Gouzenes, Y., Lancelot, L., Birol, F., Legér, F., Passaro, M., Calafat, F. M., Shaw, A., Niño, F., Legeais, J. F., Oelsmann, J., & Benveniste, J. (2024). New network of virtual altimetry stations for measuring sea level along the world coastlines [Dataset]. [object Object]. https://doi.org/10.17882/74354
Chaussard, E., Amelung, F., Abidin, H., & Hong, S.-H. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150–161. https://doi.org/10.1016/j.rse.2012.10.015
Chen, J., Fenoglio, L., Kusche, J., Liao, J., Uyanik, H., Nadzir, Z. A., & Lou, Y. (2023). Evaluation of Sentinel-3A altimetry over Songhua river Basin. Journal of Hydrology, 618, 129197. https://doi.org/10.1016/j.jhydrol.2023.129197
Fenoglio-Marc, L., Braitenberg, C., & Tunini, L. (2012). Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Physics and Chemistry of the Earth, Parts A/B/C, 40–41, 47–58. https://doi.org/10.1016/j.pce.2011.05.014
Fenoglio-Marc, L., Schöne, T., Illigner, J., Becker, M., Manurung, P., & Khafid. (2012). Sea Level Change and Vertical Motion from Satellite Altimetry, Tide Gauges and GPS in the Indonesian Region. Marine Geodesy, 35(sup1), 137–150. https://doi.org/10.1080/01490419.2012.718682
Grafarend, E. W. (2006). Linear and nonlinear models: Fixed effects, random effects, and mixed models. de Gruyter.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte, R. M., Stammer, D., Tamisiea, M. E., & Van De Wal, R. S. W. (2019). Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surveys in Geophysics, 40(6), 1251–1289. https://doi.org/10.1007/s10712-019-09525-z
Handoko, E. Y., Fernandes, M., & Lázaro, C. (2017). Assessment of Altimetric Range and Geophysical Corrections and Mean Sea Surface Models—Impacts on Sea Level Variability around the Indonesian Seas. Remote Sensing, 9(2), 102. https://doi.org/10.3390/rs9020102
Hartanto, M. T., Effendi, I., Prartono, T., Puradiredja, S. P., Lestari, D. F., Susanti, S., & Salsabila, A. (2024). KONDISI OSEANOGRAFI DAN KESESUAIAN LOKASI BUDIDAYA LOBSTER DI PERAIRAN TELUK PIDADA, LAMPUNG. Jurnal Teknologi Perikanan dan Kelautan, 15(3), Article 3. https://doi.org/10.24319/jtpk.15.285-297
Kismawardhani, R. A., Wirastriya, A., & Berlianty, D. (2018). Sea Level Rise in The Java Sea Based on Altimetry Satellites Data Over 1993-2015. IOP Conference Series: Earth and Environmental Science, 165(1), 012006. https://doi.org/10.1088/1755-1315/165/1/012006
Lumban-Gaol, J., Adrian, D., Vignudelli, S., Leben, Robert. R., Wayan Nurjaya, I., Osawa, T., Manurung, P., & Arhatin, R. E. (2018). An assessment of a coastal altimetry data product in the Indonesian Waters. IOP Conference Series: Earth and Environmental Science, 176(1), 012034. https://doi.org/10.1088/1755-1315/176/1/012034
Nadzir, Z. A. (2017). Coastal Sea State Bias: Correcting Coastal Sea Level by Studying the Relation between Wind, Waves, and the Radar Signals. [Master Thesis]. Technische Universität München.
Nadzir, Z. A. (2024). STUDI KOMPARASI UNTUK AS-BUILT SURVEY DAN PENGAWASAN DEFORMASI DARI GEDUNG: METODE TERESTRIS VS METODE SATELIT DI GEDUNG KULIAH UMUM (GKU) INSTITUT TEKNOLOGI SUMATERA. Journal of Science and Applicative Technology, 8(1), 65. https://doi.org/10.35472/jsat.v8i1.1635
Nadzir, Z. A., & Adil, I. (2024). Assessment of Low-Cost Tide Gauges to Meet GLOSS 1-cm Precision and Accuracy Standards: A Case Study on Pramuka Island, Indonesia. Forum Geografi, 38(2), 222–230. https://doi.org/10.23917/forgeo.v38i2.5182
Nadzir, Z. A., & Irfansyah, M. (2024). Using Geodetic Methods in Road Construction Planning: To What Extent Will It Be Effective? Journal of Infrastructure Policy and Management, 7(2), 167–180. https://doi.org/10.35166/jipm.v7i2.58
Nadzir, Z. A., & Rahmadhani, N. (2024). EVALUASI DAN KOMPARASI DARI MODEL ANOMALI GAYA BERAT di LAUTAN INDONESIA. Jurnal Sains Informasi Geografi, 7(2), 99. https://doi.org/10.31314/jsig.v7i2.3073
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., & Mitchum, G. T. (2018). Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proceedings of the National Academy of Sciences, 115(9), 2022–2025. https://doi.org/10.1073/pnas.1717312115
Nicholls, R. J., & Cazenave, A. (2010). Sea-Level Rise and Its Impact on Coastal Zones. Science, 328(5985), 1517–1520. https://doi.org/10.1126/science.1185782
Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338–342. https://doi.org/10.1038/s41558-021-00993-z
Pahlevi, A., Syafarianty, A., Susilo, S., Lumban-Gaol, Y., Putra, W., Triarahmadhana, B., Bramanto, B., Muntaha, R., El Fadhila, K., Ladivanov, F., Amrossalma, H., Islam, L., Novianto, D., Huda, S., Wismadi, T., Efendi, J., Ramadhan, A., Wijaya, D., Prijatna, K., & Pramono, G. (2024). Geoid Undulation Model as Vertical Reference in Indonesia. Scientific Data, 11(1), 822. https://doi.org/10.1038/s41597-024-03646-w
Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G. D., & Snaith, H. M. (2014). ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sensing of Environment, 145, 173–189. https://doi.org/10.1016/j.rse.2014.02.008
Passaro, M., Dinardo, S., Quartly, G. D., Snaith, H. M., Benveniste, J., Cipollini, P., & Lucas, B. (2016). Cross-calibrating ALES Envisat and CryoSat-2 Delay–Doppler: A coastal altimetry study in the Indonesian Seas. Advances in Space Research, 58(3), 289–303. https://doi.org/10.1016/j.asr.2016.04.011
Passaro, M., Nadzir, Z. A., & Quartly, G. D. (2018). Improving the precision of sea level data from satellite altimetry with high-frequency and regional sea state bias corrections. Remote Sensing of Environment, 218, 245–254. https://doi.org/10.1016/j.rse.2018.09.007
Sianturi, O. R., Widada, S., Prasetyawan, I. B., & Novico, F. (2013). Pemodelan Hidrodinamika Sederhana Berdasarkan Data HIdro-Oseanografi Lapangan di Teluk Lampung. Journal of Oceanography, 2(3), Article 3.
Sidabutar, Y. L., Sasmito, B., & Amarrohman, F. J. (2016). ANALISIS SEA LEVEL RISE DAN KOMPONEN PASANG SURUT DENGAN MENGGUNAKAN DATA SATELIT ALTIMETRI JASON-2. Jurnal Geodesi Undip, 5(1), Article 1. https://doi.org/10.14710/jgundip.2016.10596
Sinurat, M. E., Nababan, B., Gaol, J. L., Manik, H. M., & Idris, N. H. (2021). WAVEFORM CLASSIFICATION AND RETRACKING OF JASON-2 AND JASON-3 IN HALMAHERA SEA. Jurnal Teknologi, 83(3), 107–117. https://doi.org/10.11113/jurnalteknologi.v83.15125
Sprintall, J., Wijffels, S., Gordon, A. L., Ffield, A., Molcard, R., Susanto, R. D., Soesilo, I., Sopaheluwakan, J., Surachman, Y., & van Aken, H. M. (2004). INSTANT: A new international array to measure the Indonesian Throughflow. Eos, Transactions American Geophysical Union, 85(39), 369–376. https://doi.org/10.1029/2004EO390002
Stammer, D., & Cazenave, A. (2017). Satellite Altimetry over Oceans and Land Surfaces (D. Stammer & A. Cazenave, Ed.; 1 ed.). CRC Press. https://doi.org/10.1201/9781315151779
Tamba, A. Y. P., Sasmito, B., & Haniah, H. (2016). ANALISIS SEA LEVEL RISE DAN PENENTUAN KOMPONEN PASUT DENGAN MENGGUNAKAN DATA SATELIT ALTIMETRI JASON-2 TAHUN 2011-2014 (Studi Kasus: Perairan Sumatera Bagian Timur). Jurnal Geodesi Undip, 5(2), Article 2. https://doi.org/10.14710/jgundip.2016.11524
Wisha, U. J., Husrin, S., & Prihantono, J. (2015). Hydrodynamics Banten Bay During Transitional Seasons (August-September) (Hidrodinamika Perairan Teluk Banten Pada Musim Peralihan (Agustus–September)). ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 20(2), 101. https://doi.org/10.14710/ik.ijms.20.2.101-112
Woodworth, P. L. (1991). The Permanent Service for Mean Sea Level and the Global Sea Level Observing System. Journal of Coastal Research, 7(3), 699–710. JSTOR.







