Teknologi Biofouling dan Perlindungannya pada Pengecatan Kapal untuk Memperlambat Laju Korosi
DOI:
https://doi.org/10.30649/jrkt.v7i2.154Keywords:
Biofouling, antifouling coating, nanoteknologi, biomimetik, SPC, korosi kapalAbstract
Biofouling merupakan fenomena pertumbuhan organisme laut seperti alga, bakteri, dan teritip pada permukaan lambung kapal yang menyebabkan peningkatan hambatan hidrodinamik, konsumsi bahan bakar, biaya operasional, hingga percepatan korosi struktur. Dalam industri perkapalan modern, kebutuhan akan solusi antifouling yang efektif dan ramah lingkungan menjadi semakin mendesak, terutama setelah pelarangan senyawa tributyltin (TBT) oleh International Maritime Organization (IMO). Penelitian ini menggunakan metode Systematic Literature Review (SLR) dengan menganalisis literatur ilmiah yang diterbitkan dalam rentang tahun 2009 hingga 2025. Penelusuran data dilakukan melalui basis data bereputasi meliputi MDPI, ACS Publications, SpringerLink, dan Google Scholar, kemudian dievaluasi menggunakan analisis isi kualitatif untuk memetakan evolusi teknologi dari cat konvensional berbasis silikon, self-polishing coatings (SPC) berbahan biodegradable, hingga pendekatan nanoteknologi dan prinsip biomimetik. Hasil tinjauan menunjukkan bahwa nanomaterial seperti zinc oxide (ZnO), perak (Ag), serta struktur pelapis biomimetik menawarkan efektivitas tinggi dalam mencegah kolonisasi organisme laut dengan dampak lingkungan yang sangat rendah. Selain itu, tren pengembangan coating multifungsi yang menggabungkan sifat antifouling dan anticorrosion dinilai menjanjikan untuk efisiensi jangka panjang. Tantangan utama meliputi biaya produksi, ketahanan di lingkungan ekstrem, serta kebutuhan uji lapangan jangka panjang. Studi ini merekomendasikan arah riset lanjutan pada optimalisasi formulasi bahan nano-biokompatibel serta integrasi dengan sistem monitoring digital untuk mencegah fouling secara prediktif.
References
Abioye, O. P., Loto, C. A., & Fayomi, O. S. I. (2019). Evaluation of anti-biofouling progresses in marine application. Journal of Bio-and Tribo-Corrosion, 5, 1-8.
Aslam, J., Parray, H. A., & Aslam, A. (2024). Biomimetic surface coatings for marine antifouling applications. In Smart Biomimetic Coatings (pp. 101-128). Woodhead Publishing.
Buskens, P., Wouters, M., Rentrop, C., & Vroon, Z. (2013). A brief review of environmentally benign antifouling and foul-release coatings for marine applications. Journal of Coatings Technology and Research, 10, 29-36.
Dobretsov, S., Abed, R. M., & Teplitski, M. (2013). Mini-review: Inhibition of biofouling by marine microorganisms. Biofouling, 29(4), 423–441.
Ergin, A., & Ergin, M. F. (2021). The role of antifouling coating in the marine industry. Research & Reviews in Engineering, 53.
Esnahati, E., Susanto, H., & Syafrudin, S. (2016). Pengaruh Penambahan Nano-tio2 sebagai Agen Anti-bakterial dalam Pembuatan Membran Selulosa Asetat–Kitosan terhadap Biofouling yang Disebabkan oleh Bakteri Gram Negatif dan Positif. Disertasi. Universitas Diponegoro.
Gizer, G., Önal, U., Ram, M., & ŞAHİNER, N. (2023). Biofouling and mitigation methods: A review. Biointerface Research in Applied Chemistry, 13(2).
Gu, Y., Yu, L., Mou, J., Wu, D., Xu, M., Zhou, P., & Ren, Y. (2020). Research strategies to develop environmentally friendly marine antifouling coatings. Marine Drugs, 18(7), 371.
Ielo, I., Giacobello, F., Castellano, A., Sfameni, S., Rando, G., & Plutino, M. R. (2021). Development of antibacterial and antifouling innovative and eco-sustainable sol–gel based materials: From marine areas protection to healthcare applications. Gels, 8(1), 26.
IMO. (2001). International Convention on the Control of Harmful Anti-fouling Systems on Ships. International Maritime Organization.
Kumar, A., Ahmed, A. J., Bazaka, O., Ivanova, E. P., Levchenko, I., Bazaka, K., & Jacob, M. V. (2021). Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. Materials Horizons, 8(12), 3201-3238.
Kumar, S., Ye, F., Dobretsov, S., & Dutta, J. (2021). Nanocoating is a new way for biofouling prevention. Frontiers in Nanotechnology, 3, 771098.
Laftah, W. A., & Rahman, W. A. W. A. (2025). Polymers for anti-fouling applications: a review. Environmental Science: Advances.
Li, L., Hong, H., Cao, J., & Yang, Y. (2023). Progress in marine antifouling coatings: Current status and prospects. Coatings, 13(11), 1893.
Liang, H., Shi, X., & Li, Y. (2024). Technologies in Marine Antifouling and Anti-Corrosion Coatings: A Comprehensive Review. Coatings, 14(12), 1487.
Liu, Z., Zheng, X., Zhang, H., Li, W., Jiang, R., & Zhou, X. (2022). Review on formation of biofouling in the marine environment and functionalization of new marine antifouling coatings. Journal of Materials Science, 57(39), 18221-18242.
Maan, A. M., Hofman, A. H., de Vos, W. M., & Kamperman, M. (2020). Recent developments and practical feasibility of polymer‐based antifouling coatings. Advanced functional materials, 30(32), 2000936.
Nwuzor, I. C., Idumah, C. I., Nwanonenyi, S. C., & Ezeani, O. E. (2021). Emerging trends in self-polishing anti-fouling coatings for marine environment. Safety in Extreme Environments, 3(1), 9-25.
Papadopoulos, N., & Vourna, P. (2024). Eco-friendly approaches of modern antifouling coating fabrication. Materials Open Research, 3(4), 4.
Purwaningsih, E., & Rahmanto, D. (2012). PERLINDUNGAN HUKUM TERHADAP PRODUK NANOTEKNOLOGI MELALUI HUKUM PATEN. ADIL: Jurnal Hukum, 3(1), 166-184.
Qian, P. Y., Xu, Y., & Fusetani, N. (2009). Natural products as antifouling compounds: recent progress and future perspectives. Biofouling, 26(2), 223-234.
Schultz, M. P., Bendick, J. A., Holm, E. R., & Hertel, W. M. (2011). Economic impact of biofouling on a naval surface ship. Biofouling, 27(1), 87-98.
Sinha, S., Kumar, R., Anand, J., Gupta, R., Gupta, A., Pant, K., ... & Gupta, P. K. (2023). Nanotechnology-based solutions for antibiofouling applications: An overview. ACS Applied Nano Materials, 6(14), 12828-12848.
Somya, A., Varshney, A., Thakur, A., Kumar, A., KS, S., & Kumari, P. (2024). Anti-Fouling Nano-Hybrid/Composite Smart Coatings with Specific Reference to Marine Applications. In Nano-Hybrid Smart Coatings: Advancements in Industrial Efficiency and Corrosion Resistance (pp. 205-226). American Chemical Society.
Subbaiyan, R., Ganesan, A., & Varadharajan, V. (2023). Bioprospecting and exploration of the natural antifouling approaches against marine foulers. J. Pure Appl. Microbiol, 17, 1374-1390.
Thomas, P., Sahoo, B. N., Thomas, P. J., & Greve, M. M. (2024). Recent advances in emerging integrated anticorrosion and antifouling nanomaterial-based coating solutions. Environmental Science and Pollution Research, 1-27.
Tsimnadi, M. D. (2023). A comparative study of the effectiveness of antifouling paints for the protection of ship hulls from biofouling. Master's thesis. Πανεπιστήμιο Πειραιώς.
Wang, A., De Silva, K., Jones, M., Robinson, P., Larribe, G., & Gao, W. (2023). Anticorrosive coating systems for marine propellers. Progress in Organic Coatings, 183, 107768.
Wu, S., Wu, S., Xing, S., Wang, T., Hou, J., Zhao, Y., & Li, W. (2024). Research Progress of Marine Anti-Fouling Coatings. Coatings, 14(9), 1227.
Weber, F., & Esmaeili, N. (2023). Marine biofouling and the role of biocidal coatings in balancing environmental impacts. Biofouling, 39(6), 661-681.







