Sirkulasi Termohalin Global: Tinjauan terhadap Penelitian Terkini dan Implikasinya

Authors

  • Engki A Kisnarti Prodi Oseanografi, Fakultas Teknik dan Ilmu Kelautan, Universitas Hang Tuah
  • Faizah Zasi Fidhini Prodi Oseanografi, Fakultas Teknik dan Ilmu Kelautan, Universitas Hang Tuah
  • Ima Nurmalia Permatasari Prodi Oseanografi, Fakultas Teknik dan Ilmu Kelautan, Universitas Hang Tuah

DOI:

https://doi.org/10.30649/jrkt.v7i1.90

Keywords:

Sirkulasi Termohalin, Arus Laut, Salinitas, Perubahan Iklim, Energi

Abstract

Sirkulasi termohalin global merupakan fenomena penting yang berpengaruh pada iklim dan transportasi energi di lautan. Penelitian ini bertujuan untuk menganalisis pengaruh perbedaan salinitas dan temperatur terhadap dinamika arus laut. Metode yang digunakan mencakup model sirkulasi umum laut, analisis sedimen sapropel, dan penelitian difusi vertikal, dengan pengumpulan data dari berbagai sumber. Hasil penelitian menunjukkan bahwa energi kinetik angin menyuplai sekitar 778 GW, di mana 80% diubah menjadi energi potensial gravitasi, terutama di Samudra Antarktika. Selain itu, perubahan salinitas dan temperatur selama periode Messinian di Laut Mediterania menyebabkan deoksigenasi yang berdampak pada produktivitas primer. Temuan menunjukkan peningkatan salinitas di zona minimum serta anomali positif dalam salinitas dan temperatur antara kedalaman 600–1200 dbar. Penelitian ini menekankan pentingnya sirkulasi termohalin dalam pengaturan iklim global dan perlunya penelitian lebih lanjut untuk memahami dampak perubahan iklim terhadap sistem laut.

References

Brennecke, W. (1921). Die ozeanographischen Arbeiten der deutschen antarktischen Expedition 1911-1912. Hammerich and Lesser.

Duffy, P. B., & Caldeira, K. (1999). Sensitivity of simulated salinity in a three-dimensional ocean model to upper ocean transport of salt from sea‐ice formation. Geophysical Research Letters, 24(11), 1323-1326.

Hu, A., Meehl, G. A., & Han, W. (2004). Detecting thermohaline circulation changes from ocean properties in a coupled model. Geophysical Research Letters, 31(13).

Kim, S. J., & Stössel, A. (2000). Impact of subgrid-scale convection on global thermohaline properties and circulation. Journal of physical oceanography, 31(3), 656-674.

Latif, M., Böning, C., Willebrand, J., Biastoch, A., Dengg, J., Keenlyside, N., ... & Madec, G. (2006). Is the thermohaline circulation changing?. Journal of Climate, 19(18), 4631-4637.

Manabe, S., & Stouffer, R. J. (1994). Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. Journal of climate, 7(1), 5-23.

Mancini, A. M., Bocci, G., Morigi, C., Gennari, R., Lozar, F., & Negri, A. (2023). Past analogues of deoxygenation events in the mediterranean sea: a tool to constrain future impacts. Journal of Marine Science and Engineering, 11(3), 562.

Mancini, A. M., Gennari, R., Lozar, F., Natalicchio, M., Della Porta, G., Bernasconi, D., ... & Negri, A. (2024). Sensitivity of the thermohaline circulation during the Messinian: Toward constraining the dynamics of Mediterranean deoxygenation. Deep Sea Research Part I: Oceanographic Research Papers, 203, 104217.

Ozer, T., Gertman, I., Gildor, H., Goldman, R., & Herut, B. (2019). Evidence for recent thermohaline variability and processes in the deep water of the Southeastern Levantine Basin, Mediterranean Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 171, 104651.

Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., ... & Stoica, M. (2014). The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25-58.

Rohling, E. J., Marino, G., & Grant, K. M. (2015). Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Science Reviews, 143, 62-97.

Thorpe, R. B., Gregory, J. M., Johns, T. C., Wood, R. A., & Mitchell, J. F. B. (2001). Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. Journal of Climate, 14(14), 3102-3116.

Urakawa, L. S., & Hasumi, H. (2009). A remote effect of geothermal heat on the global thermohaline circulation. Journal of Geophysical Research: Oceans, 114(C7).

Urakawa, L. S., & Hasumi, H. (2009). The energetics of global thermohalin circulation and its wind enhancement. Journal of physical oceanography, 39(7), 1715-1728.

Wang, X., Stone, P. H., & Marotzke, J. (1999). Global thermohaline circulation. Part II: Sensitivity with interactive atmospheric transports. Journal of climate, 12(1), 83-91.

Wang, X., Stone, P. H., & Marotzke, J. (1999). Global thermohaline circulation. Part II: Sensitivity with interactive atmospheric transports. Journal of climate, 12(1), 83-91.

Published

2025-04-01

How to Cite

Engki A Kisnarti, Faizah Zasi Fidhini, & Ima Nurmalia Permatasari. (2025). Sirkulasi Termohalin Global: Tinjauan terhadap Penelitian Terkini dan Implikasinya. Jurnal Riset Kelautan Tropis (Journal Of Tropical Marine Research) (J-Tropimar), 7(1), 38–52. https://doi.org/10.30649/jrkt.v7i1.90

Issue

Section

Articles